

COMETS - Comets Observation & Mapping Enhanced THZ Spectrometer

PI: Jose V. Siles / Jet Propulsion Laboratory

Target: Comets/asteroids (either flyby or orbit): subsurface temperature mapping, water mapping, composition (D/H ratios, abundance of major volatiles, etc.) . In addition, COMETS can be used for water plumes detection Ocean Worlds.

Science:

- COMETS will allow for the first time to obtain maps of inner coma gases and temperatures at the same time and rotation phase.
- This will allow to constrain coma models, rather than relying on their extrapolation to interpret the data obtained.
- COMETS dual-band large band receivers will largely expand on number of species studied.

Objectives:

- To develop the first all-solid-state roomtemperature Schottky diode based dual-band multipixel heterodyne receiver front-end
- To enable high-resolution ($\Lambda/\Delta\Lambda$ > 106) fast mapping of cometary comas and surfaces, as well as other planetary bodies: Enceladus/Europa.
- COMETS will feature two bands integrated on a compact packaging (210-240 GHz & 500-580 GHz) with 16-pixel each.

CoIs: Jose V. Siles (PI); Mathieu Choukroun; Choonsup Lee, Jonathan Kawamura; Goutam Chattopadhyay, Maria Alonso del Pino (all with NASA Jet Propulsion Laboratory)

Key Milestones:

- Year 1: Complete fabrication of Schottky diode devices
 I&T of prototype single-pixel dual band receiver
- Year 2: Complete design & fab of Silicon lens array
 I&T of dual-band 16-pixel receiver
- Year 3: Full characterization of 16-pixel dual band LO
 Full characterization of 16-pixel dual band mixers
 Full I&T of COMETS 16-pixel RFE

 TRL 2 to 4